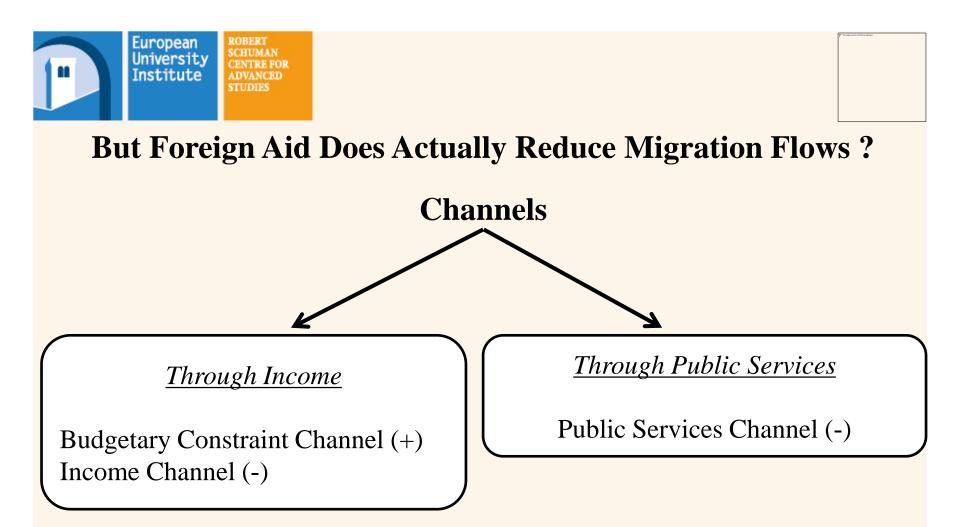


Mercator Dialogue on Asylum and Migration

How does Foreign Aid affect Migration Flows?

Dr Mauro Lanati MEDAM Post-Doctoral Research Fellow Migration Policy Centre (EUI)

Prof Rainer Thiele Professor of Economics Kiel Institute for the World Economy


Foreign Aid as a recipe to address the Root Causes of Irregular Migration

Britain needs to spend more of its budget on helping stabilise countries so that it doesn't have to fish migrants out of Mediterranean (June 2015 the UK Defence secretary; The Guardian, 21st June 2015).

We must also continue our political and development action to improve the living conditions in the countries of origin, working with them there, so that people do not have to flee their homes (Jose Manuel Barroso 9th October 2013, EU Commission)

EUI 2

 \checkmark Net effect is not clear cut as it is subject to contrasting forces

- \checkmark It's an empirical question
- ✓ Previous literature → Positive Relationship

Inverted U Shape (Clemens et al 2014)

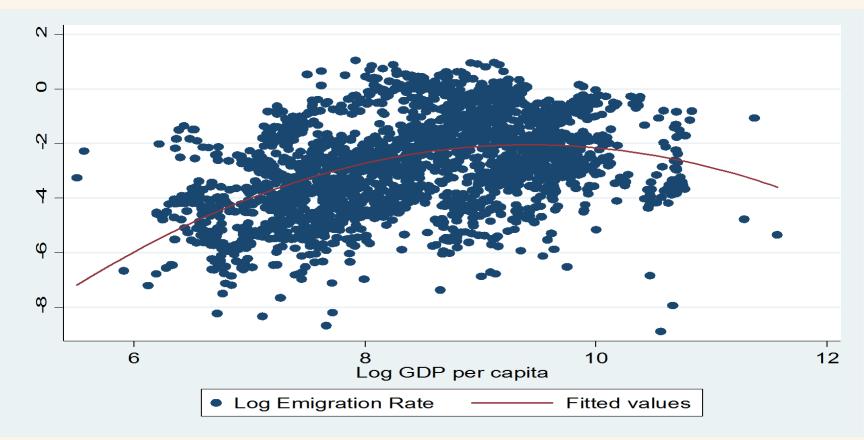


Figure from Lanati Thiele (2017)

European University Institute

Our Contribution

<u>Migrant flows rather than stocks in the dependent variable</u>. These stocks are inserted as additional regressor to better identify the network channel.

- ✓ <u>We run separate regressions for poorer and richer recipient countries</u>, which enables us to test whether the budgetary constraint channel is indeed relevant at low levels of per capita income.
- ✓ <u>Disaggregated Analysis for different types of Foreign Aid</u>: (i) Social Infrastructure/Services, (ii), Economic Infrastructure & Services and (iii) Production Sectors
- ✓ Derives the econometric specification from a gravity model of international migration
- \checkmark Pooling time-series and cross-section data.
- Controlling for time-varying, origin-specific covariates of migration decisions, such as environmental factors and the presence of conflicts.

EUI 5

Methodology

<u>Gravity Model for International Migration :</u>

$$\begin{split} ln\left(\frac{N_{in,t}}{N_{nn,t}}\right) &= \beta_1 ln\left(\frac{w_{i,t}}{w_{n,t}}\right) + a_{i,t} + a_n + \beta_2 ln(\text{AggAid}_{n,t-1}) \\ &+ \beta_3(\text{Conflict}_{n,t-1}) + \beta_4(\text{Governance}_{n,t-1}) \\ &+ \beta_5(\text{Dependency}_{n,t-1}) + \beta_6(\text{NatDis}_{n,t-1}) + \beta_7 ln(1 + \text{MigStock}_{in,t-1}) \\ &+ \beta_8 ln(\text{dist}_{ni}) + \beta_9(\text{Colony}_{ni}) + \beta_{10}(\text{LangDist}_{ni}) + \beta_{11} ln(\text{BilAid}_{ni,t-1}) \\ &+ \varepsilon_{ni,t} \end{split}$$

- ✓ Building on Beine and Parsons (2015) : bilateral migration rates as function of proxies for bilateral migration costs and time varying origin specific determinants of migration
- ✓ Because our primary focus is upon Aggregate ODA at origin, we use appropriate fixed effects and dummies to capture the impact of destination-specific factors and time-invariant origin factors.

Baseline Results

European University Institute

< ÎI |

ROBERT SCHUMAN CENTRE FOR ADVANCED

	Class of Income	$ln(EMrate_{in,t})$ $0^{th} - 100^{th}$	$ln(EMrate_{in,t})$ $0^{th} - 49^{th}$	ln(EMrate _{in,t}) 50 th -100 th
	ln(BilAid _{ni,t-1})	0.0936***	0.106***	0.0963
		(16.94)	(12.95)	(12.54)
	$\ln(\text{AggAid}_{n,t-1})$	-0.0831*** (-3.98)	-0.114 ^{***} (-4.14)	-0.101** (-2.92)
		(-3.98)		
	$\ln(\text{GDP}_{i,t-1}/\text{GDP}_{n,t-1})$	-0.0561	-0.234**	0.261*
		(-0.88)	(-2.68)	(2.08)
	ln(MigStock _{in,t-1})	0.600***	0.628***	0.561***
		(40.27)	(27.47)	(27.18)
	$\ln(dist_{ni})$	-0.352***	-0.302***	-0.395***
	m(uist _{ni})	(-13.22)	(-5.22)	(-13.03)
		0.481***	0.295***	0.702***
	Colony _{ni}	(9.98)	(3.47)	(11.04)
	LangProx _{ni}	0.446 ^{***} (10.68)	0.409*** (7.16)	0.553 ^{***} (7.94)
			(7.10)	(7.94)
	$Dependency_{n,t-1}$	-0.00818***	-0.00475	-0.00405
		(-3.71)	(-1.53)	(-1.13)
	PolStability _{n,t-1}	-0.0439*	-0.0327	-0.0332
	<i>v</i> 11,t=1	(-1.99)	(-1.05)	(-1.05)
	Conflict _{n,t-1}	1.888***	2.840***	1.033
	Connect _{n,t-1}	(3.60)	(3.69)	(1.41)
		***	***	
	$AggAid_{n,t-1}Conflict_{n,t-1}$	-0.0894*** (-3.54)	-0.132*** (-3.56)	-0.0540 (-1.51)
		(-3.54)	(-3.50)	(-1.51)
	NatDis _{n,t-1}	0.00301	-0.00203	0.00100
		(1.12)	(-0.45)	(0.26)
	N	14154	7065	7082
	a_n	x	x	x
	$a_{i,t}$	X	X	X
	R _{sq}	0.91	0.89	0.92
15	/06/2018	MPC - www.migrat	ionpolicycentre.eu	* * * EUI 7

European University Institute

Disaggregate Analysis

· · · ·	(1)	(2)	(3)	(4)
	In(EMrate _{in.t})	In(EMrate _{in.t})	In(EMrate _{in.t})	In(EMrate _{in.t})
	Total	Social Inf.	Economic	Production
ln(BilAid _{ni,t-1})	0.081	0.079	0.079	0.079
	(13.63)	(13.53)	(13.47)	(13.33)
$\ln(\text{AggAid}_{n,t-1})$	-0.096***	-0.119***	-0.046***	-0.065***
(88n,t-1)	(-4.07)	(-3.49)	(-4.22)	(-3.99)
$\ln(\text{GDP}_{i,t-1}/\text{GDP}_{n,t-1})$	-0.054	-0.110	-0.057	-0.093
$m(ODP_{i,t-1}/ODP_{n,t-1})$	(-0.47)	(-0.94)	(-0.48)	(-0.80)
	(-0.47)	(-0.94)	(-0.48)	(-0.80)
$\ln(MigStock_{in,t-1})$	0.618	0.618***	0.620	0.618***
in (i iigototiiii,t=1)	(37.67)	(37.62)	(37.66)	(37.61)
$\ln(dist_{ni})$	-0.324	-0.327	-0.325***	-0.328***
	(-11.36)	(-11.45)	(-11.37)	(-11.49)
Colony _{ni}	0.457***	0.460***	0.455***	0.463***
	(8.40)	(8.41)	(8.34)	(8.46)
I D	0.201	0.394***	0.396***	0.207***
LangProx _{ni}	0.391***			0.397***
	(8.76)	(8.80)	(8.83)	(8.88)
$Dependency_{n,t-1}$	-0.015***	-0.015***	-0.014**	-0.013**
Dependency _{n,t-1}	(-3.56)	(-3.54)	(-3.27)	(-3.24)
	(5.50)	(3.54)	(3.27)	(3.2.1)
PolStability _{n,t-1}	0.009	0.007	0.012	0.015
1 010 010 JII (J II,t-1	(0.28)	(0.22)	(0.39)	(0.47)
Conflict _{n,t-1}	-0.057	-0.001	-0.016	-0.005
	(-0.67)	(-0.01)	(-0.19)	(-0.06)
$AggAid_{n,t-1}Conflict_{n,t-1}$		0.005	0.010	0.006
	(0.78)	(0.23)	(0.41)	(0.22)
NatDis _{n,t-1}	-0.001	-0.001	-0.001	-0.002
NatDIS _{n,t-1}				
	(-0.47)	(-0.52)	(-0.27)	(-0.54)
N	10482	10482	10465	10482
an	x	x	x	x
ai.t	x	x	x	x
R _{so}	0.91	0.90	0.90	0.90
			× *	**
15/06/2018	MDC	anotion no li avantro au	*	*0

15/06/2018

• • • •

MPC - www.migrationpolicycentre.eu

European University Institute

Stocks vs Flows of Migrants

0.0236 ^{***} (7.43) -0.0332 [*] (-2.50) 0.773 ^{****} (66.68) 0.110 ^{****} (11.27) -0.00916 (-0.21) -0.118 ^{****} (-9.71) 0.163 ^{****} (7.44) 0.129 ^{****} (5.42)	$\begin{array}{c} -0.0000248 \\ (-0.01) \\ 0.0199^{*} \\ (2.44) \\ 0.117^{***} \\ (7.95) \\ \end{array}$ $\begin{array}{c} 0.868^{***} \\ (42.33) \\ -0.0416 \\ (-1.73) \\ -0.0396^{*} \\ (-2.01) \\ 0.0549^{**} \\ (2.77) \\ -0.006664 \\ (.0.53) \end{array}$	$\begin{array}{c} 0.0000432\\ (0.02)\\\\\hline\\ 0.0211^{**}\\ (2.66)\\\\\hline\\ 0.117^{***}\\ (11.55)\\\\\hline\\ -0.003\\ (-0.24)\\\\\hline\\ 0.873^{***}\\ (36.17)\\\\\hline\\ -0.0602^{*}\\ (-2.57)\\\\\hline\\ -0.0370^{*}\\ (-2.04)\\\\\hline\\ 0.0491^{**}\\ (2.62)\\\\\hline\\ -0.00821\\\\\hline\\ -0.00821\\\hline\end{array}$
(-2.50) 0.773**** (66.68) 0.110*** (11.27) -0.00916 (-0.21) -0.118*** (-9.71) 0.163**** (7.44) 0.129***	(2.44) 0.117^{***} (7.95) 0.868^{***} (42.33) -0.0416 (-1.73) -0.0396^{*} (-2.01) 0.0549^{**} (2.77) -0.00664	(2.66) 0.117^{***} (11.55) -0.003 (-0.24) 0.873^{***} (36.17) -0.0602^{*} (-2.57) -0.0370^{*} (-2.04) 0.0491^{**} (2.62) -0.00821
0.773*** (66.68) 0.110*** (11.27) -0.00916 (-0.21) -0.118*** (-9.71) 0.163*** (7.44) 0.129***	0.117*** (7.95) 0.868*** (42.33) -0.0416 (-1.73) -0.0396* (-2.01) 0.0549** (2.77) -0.00664	$\begin{array}{c} 0.117^{***}\\(11.55)\\ \begin{array}{c} -0.003\\(-0.24)\\ 0.873^{***}\\(36.17)\\ \begin{array}{c} -0.0602^{*}\\(-2.57)\\ \begin{array}{c} -0.0370^{*}\\(-2.04)\\ 0.0491^{**}\\(2.62)\\ \begin{array}{c} -0.00821 \end{array}$
(66.68) 0.110**** (11.27) -0.00916 (-0.21) -0.118*** (-9.71) 0.163*** (7.44) 0.129***	(7.95) 0.868**** (42.33) -0.0416 (-1.73) -0.0396* (-2.01) 0.0549** (2.77) -0.00664	(11.55) -0.003 (-0.24) 0.873^{***} (36.17) -0.0602^{*} (-2.57) -0.0370^{*} (-2.04) 0.0491^{**} (2.62) -0.00821
(66.68) 0.110**** (11.27) -0.00916 (-0.21) -0.118*** (-9.71) 0.163*** (7.44) 0.129***	0.868**** (42.33) -0.0416 (-1.73) -0.0396* (-2.01) 0.0549** (2.77) -0.00664	-0.003 (-0.24) 0.873*** (36.17) -0.0602* (-2.57) -0.0370* (-2.04) 0.0491** (2.62) -0.00821
(66.68) 0.110**** (11.27) -0.00916 (-0.21) -0.118*** (-9.71) 0.163*** (7.44) 0.129***	(42.33) -0.0416 (-1.73) -0.0396* (-2.01) 0.0549** (2.77) -0.00664	(-0.24) 0.873*** (36.17) -0.0602* (-2.57) -0.0370* (-2.04) 0.0491** (2.62) -0.00821
(66.68) 0.110**** (11.27) -0.00916 (-0.21) -0.118*** (-9.71) 0.163*** (7.44) 0.129***	(42.33) -0.0416 (-1.73) -0.0396* (-2.01) 0.0549** (2.77) -0.00664	(-0.24) 0.873*** (36.17) -0.0602* (-2.57) -0.0370* (-2.04) 0.0491** (2.62) -0.00821
(11.27) -0.00916 (-0.21) -0.118*** (-9.71) 0.163*** (7.44) 0.129***	(42.33) -0.0416 (-1.73) -0.0396* (-2.01) 0.0549** (2.77) -0.00664	(36.17) -0.0602* (-2.57) -0.0370* (-2.04) 0.0491** (2.62) -0.00821
(11.27) -0.00916 (-0.21) -0.118*** (-9.71) 0.163*** (7.44) 0.129***	(42.33) -0.0416 (-1.73) -0.0396* (-2.01) 0.0549** (2.77) -0.00664	(36.17) -0.0602* (-2.57) -0.0370* (-2.04) 0.0491** (2.62) -0.00821
-0.00916 (-0.21) -0.118*** (-9.71) 0.163*** (7.44) 0.129***	-0.0416 (-1.73) -0.0396* (-2.01) 0.0549** (2.77) -0.00664	-0.0602* (-2.57) -0.0370* (-2.04) 0.0491** (2.62) -0.00821
(-0.21) -0.118*** (-9.71) 0.163*** (7.44) 0.129***	(-1.73) -0.0396* (-2.01) 0.0549** (2.77) -0.00664	(-2.57) -0.0370* (-2.04) 0.0491** (2.62) -0.00821
-0.118*** (-9.71) 0.163*** (7.44) 0.129***	-0.0396* (-2.01) 0.0549** (2.77) -0.00664	-0.0370* (-2.04) 0.0491** (2.62) -0.00821
(-9.71) 0.163*** (7.44) 0.129***	(-2.01) 0.0549** (2.77) -0.00664	(-2.04) 0.0491** (2.62) -0.00821
0.163*** (7.44) 0.129***	0.0549** (2.77) -0.00664	0.0491** (2.62) -0.00821
(7.44) 0.129***	(2.77) -0.00664	(2.62) -0.00821
0.129***	-0.00664	-0.00821
(5.42)		
	(-0.53)	(-0.69)
-0.00185	-0.000681	-0.000618
(-1.12)	(-0.72)	(-0.61)
-0.0346*	-0.0111	-0.0150
(-2.43)	(-1.28)	(-1.78)
0.899**	1.080***	1.074***
(2.60)	(6.67)	(7.13)
-0.0429**	-0.0534***	-0.0532****
(-2.58)	(-6.83)	(-7.27)
0.001	0.001	0.001
(0.16)	(1.34)	(1.16)
13636	13238	12745
X	X	X X
0.96	0.98	0.98
		* * *
_	(-2.58) 0.001 (0.16) 13636 X X X	(-2.58) (-6.83) 0.001 0.001 (0.16) (1.34) 13636 13238 X X X X X

Our Results - Summary

- ✓ Robust negative relationship between aggregate aid received and emigration rates.
- ✓ This even holds for the poorer part of recipient countries, which suggests that the budgetary constraint channel does not play a significant role in shaping migration decisions.
- ✓ The most plausible explanation for these contrasting results is that, unlike in previous studies, we use migrant flows rather than migrant stocks as the dependent variable.

Our Results – Summary I

✓ This result is mostly driven by foreign assistance to public services (school, health sectors)

<u>Our finding is in line with</u> :

The Millennium Development GoalsDustmann and Okatenko (2014)

Our Results – Summary II

- ✓ Taken together, this gives the impression that policymakers in rich countries are right to view foreign aid as an appropriate instrument to curb the flow of migrants.
- ✓ It has to be noted, however, that the aggregate results presented here can only provide a very rough guide for policymaking, because of the heterogeneous impacts of foreign aid, which we illustrate by drawing a distinction between different types of assistance.

